Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis.

Website: http://www.ncbi.nlm.nih.gov/pubmed/24860510

Gerasimova E1, Audit B2, Roux SG3, Khalil A3, Gileva O4, Argoul F2, Naimark O1, Arneodo A2.

Author information

- 1Laboratory of Physical Foundation of Strength, Institute of Continuous Media Mechanics UB RAS Perm, Russia.
- 2Laboratoire de Physique, ENS de Lyon, CNRS, UMR 5672, Université de Lyon Lyon, France.
- 3Department of Mathematics and Statistics, University of Maine Orono, ME, USA.
- 4Department of Therapeutic and Propedeutic Dentistry, Perm State Academy of Medicine Perm, Russia.

Abstract

Breast cancer is the most common type of cancer among women and despite recent advances in the medical field, there are still some inherent limitations in the currently used screening techniques. The radiological interpretation of screening X-ray mammograms often leads to over-diagnosis and, as a consequence, to unnecessary traumatic and painful biopsies. Here we propose a computer-aided multifractal analysis of dynamic infrared (IR) imaging as an efficient method for identifying women with risk of breast cancer. Using a wavelet-based multi-scale method to analyze the temporal fluctuations of breast skin temperature collected from a panel of patients with diagnosed breast cancer and some female volunteers with healthy breasts, we show that the multifractal complexity of temperature fluctuations observed in healthy breasts is lost in mammary glands with malignant tumor. Besides potential clinical impact, these results open new perspectives in the investigation of physiological changes that may precede anatomical alterations in breast cancer development.

KEYWORDS:
breast cancer; infrared thermography; wavelet transform modulus maxima method